The Chernobyl nuclear disaster occurred on April 26, 1986. In the following days, radioactivity was also spread over Germany by the Chernobyl fallout. Today, cesium-137 is still found in the environment due to its half-life of about 30 years. Due to the special ecology of forest soils compared to arable soils, elevated levels of Cs-137 contamination can still be found in some forest biomedia, especially in deer truffles and wild boar.
We at Umweltanalysen have been investigating the radiocesium contamination of deer truffles in selected areas in Germany for 20 years, both within the framework of contract research and on our own behalf. The object of investigation is by far the most common species Elaphomyces granulatus.
Figure 1 shows a warty deer truffle still enclosed in the root sheath. The protruding light threads are mycelium of the fungus.
Caesium-137 readings from deer truffles from 2018, 2019 and 2020
Current 2020 measurements
On 23.02.2020, fruiting bodies of deer truffles were found in Hambühren, Lower Saxony. A composite sample was formed from each collection and this was measured by gamma spectrometry at Laboratory for Radioisotopes of the Georg-August-University Göttingen. (LARI). The caesium-137 activity of the 4 samples was, based on fresh weight:
Cesium 137
847 Bq/kg
1,017 Bq/kg
1,555 Bq/kg
1,138 Bq/kg
We last analyzed deer truffles from an area particularly affected by the Chernobyl fallout in the Bavarian Forest National Park (see also map Cs-137 soil contamination) for cesium-137 activity in 2018 and 2019. The gamma spectrometric measurements were performed at the LARI. The measurement error was <10%. The results are given in Table 1 and Table 2.
Tab. 1: Cesium-137 activity of deer truffle spores and peridium. Place of discovery Zwieseler Waldhaus (Bavarian Forest National Park). Collection date 08.08.2019. FW=Fresh Weight, DW= Dry Weight.
Cs-137 [Bq/kg FW] | Cs-137 [Bq/kg DW] |
11777 | 29370 |
8600 | 22280 |
5593 | 12540 |
5825 | 14860 |
Tab. 2: Cesium-137 activity of Elaphomyces granulatus from the Bavarian Forest National Park. Date of discovery 18.09.2018
Cs-137 [Bq/kg FW] | Cs-137 [Bq/kg DW] |
45497 | 101200 |
38754 | 83930 |
23714 | 52020 |
19909 | 43070 |
15918 | 38070 |
14997 | 33430 |
14874 | 30120 |
14233 | 28290 |
12505 | 26050 |
7934 | 17750 |
Cs-137 activity ranged from 7,934 Bq/kg to 45,497 Bq/kg based on fresh weight.
Time series show as trend a decrease of radiocesium contamination (example in Figure 2). Apparently, the half-life of 30.17 years makes itself felt. If the Cs-137 contamination of deer truffles in the first 2 decades after the reactor accident was probably determined especially by chemical-physical relocation and biotic transport processes, radioactive decay could dominate now.
Fig. 2: Development of the caesium-137 activity of deer truffles on permanent sample plot B1, Bodenmais (Bavaria) with linear regression line.
Measurement data from research projects from 2000 – 2010
In several research projects the radiocesium contamination of deer truffles was determined. In tables 3 – 6 measured data from different research areas are given.
Tab. 3: Cs-137 measured values of deer truffles and soil, study area Arnsberg (North Rhine-Westphalia), sampling 2009 – 2010. Source: Fielitz and Richter 2013. TF = Transfer factor
Elapomyces species | Fruiting body | Soil | TF |
C-137 | C-137 | ||
[Bq/kg FW] | [Bq/kg FW] | ||
E. granulatus | 108 | ||
E. g. | 127 | ||
E. g. | 225 | ||
E. g. | 260 | ||
E. g. | 286 | ||
E. g. | 314 | ||
E. g. | 325 | ||
E. g. | 339 | ||
E. g. | 364 | ||
E. g. | 394 | ||
E. g. | 490 | ||
E. g. | 526 | ||
E. g. | 680 | ||
E. g. | 694 | 91.4 | 7.6 |
E. g. | 719 | ||
E. g. | 826 | 84.8 | 9.7 |
E. g. | 865 | ||
E. g. | 983 | ||
E. g. | 1314 | 88.5 | 14.8 |
E. g. | 1582 | ||
E. muricatus | 98,7 | ||
E. muricatus | 219 | ||
E. muricatus | 877 | 111 | 7.9 |
E. muricatus | 991 | 120 | 8.3 |
E. muricatus | 1307 | 110 | 11.9 |
Tab. 4: Cs-137 measured values of deer truffles and soil, study area Göhrde (Lower Saxony), sampling 2009 – 2010. Source: Fielitz and Richter 2013.
Elapomyces species | Fruiting body | Soil | TF |
C-137 | C-137 | ||
[Bq/kg FW] | [Bq/kg FW] | ||
E. granulatus | 80,9 | ||
E. g. | 213 | ||
E. g. | 395 | 130 | 3 |
E. g. | 398 | 63.7 | 6.3 |
E. g. | 478 | ||
E. g. | 610 | ||
E. g. | 638 | ||
E. g. | 669 | ||
E. g. | 841 | ||
E. g. | 1160 | 94.5 | 12.3 |
E. g. | 1194 | 75.4 | 15.8 |
E. g. | 1446 | ||
E. g. | 1527 | ||
E. g. | 1626 | ||
E. g. | 1648 | 57.3 | 28.8 |
E. g. | 1780 | ||
E. g. | 1806 | 18.2 | 99.2 |
E. g. | 1865 | ||
E. g. | 1919 | ||
E. g. | 2093 | ||
E. g. | 2575 | ||
E. g. | 2584 | ||
E. g. | 2647 | 76.2 | 34.7 |
E. g. | 2841 | ||
E. g. | 2863 | ||
E. muricatus | 228 | ||
E. m. | 712 | ||
E. m. | 887 | 75.4 | 11.8 |
E. m. | 2384 | 94,5 | 25.2 |
E. m. | 3099 | 76.2 | 40.7 |
Tab. 5: Cs-137 measured values of deer truffles and soil, study area Harz (Lower Saxony), sampling 2009 – 2010. Source: Fielitz and Richter 2013.
Elapomyces species | Fruiting body | Soil | TF |
C-137 | C-137 | ||
[Bq/kg FW] | [Bq/kg FW] | ||
E. granulatus | 31 | ||
E. g. | 353 | ||
E. g. | 585 | ||
E. g. | 593 | ||
E. g. | 614 | ||
E. g. | 632 | ||
E. g. | 702 | ||
E. g. | 780 | 167 | 4,7 |
E. g. | 972 | ||
E. g. | 1038 | ||
E. g. | 1283 | 338 | 3,8 |
E. g. | 1536 | ||
E. g. | 1832 | ||
E. g. | 1847 | 230 | 8 |
E. g. | 1863 | 40,5 | 46 |
E. g. | 1957 | ||
E. g. | 1983 | ||
E. g. | 2830 | ||
E. g. | 3995 | ||
E. g. | 4838 | ||
E. g. | 5520 | ||
E. g. | 6655 | ||
E. muricatus | 217 | ||
E. m. | 1323 | 143 | 9,3 |
E. m. | 1585 | 131 | 12,1 |
E. m. | 2041 | ||
E. m. | 2424 | 227 | 10.7 |
E. m. | 2353 | ||
E. m. | 2553 | 97.3 | 26.2 |
Tab. 6: Cs-137 measured values of deer truffles and soil, study area Ohrdruf (Thuringia), sampling 2009 – 2010. Source: Fielitz and Richter 2013.
Elapomyces species | Fruiting body | Soil | TF |
C-137 | C-137 | ||
[Bq/kg FW] | [Bq/kg FW] | ||
E. granulatus | 96 | ||
E. granulatus | 183 | ||
E. granulatus | 381 | 116 | 3.3 |
E. granulatus | 873 | 188 | 4.6 |
E. granulatus | 370 | ||
E. granulatus | 570 | ||
E. muricatus | 588 | 222 | 2.7 |
E. granulatus | 595 | ||
E. granulatus | 644 | ||
E. granulatus | 661 | ||
E. granulatus | 677 | ||
E. granulatus | 734 | ||
E. granulatus | 758 | ||
E. granulatus | 765 | ||
E. granulatus | 847 | ||
E. granulatus | 888 | ||
E. granulatus | 903 | ||
E. granulatus | 946 | 118 | 8 |
E. granulatus | 1202 | ||
E. granulatus | 1597 | ||
E. muricatus | 301 | ||
E. muricatus | 558 | ||
E. muricatus | 678 | 156 | 4.3 |
E. muricatus | 745 | 244 | 3.2 |
E. granulatus | 1513 | 401 | 3.8 |
Distribution of Cs-137 activity in a deer truffle fruiting body
The distribution of Cs-137 activity in the fruiting body of a deer truffle was determined using a phosphor imager (Raytest company). In this process, the activity distribution is converted into a color-intensive image. For this purpose, a 2 mm thick slice was cut from the center of a deer truffle and exposed to a phosphor imager for 24 hours (Figure 3).
Fig. 3: “photostimulated luminescence” image of the Cs-137 distribution of a 2 mm thick slice of a deer truffle (left image) and the pure spore mass (right image) by a phosphor imager (see text for explanations).
The measuring principle is based on the excitation of phosphorus atoms (P-32) by radioactive radiation, in this case predominantly Cs-137 (“photostimulated luminescence” PSL).
The left picture shows the “photostimulated luminescence” image of the whole slice of deer truffle. The area between the lines marked 1 and 2 corresponds to the bark. The right image shows a slice of the same deer truffle, without the bark. It can be clearly seen that the highest activity is in the bark (orange color occupation), the spore mass inside contains much less Cs-137 (right figure). The color pattern outside the bark is due to scattered radiation. The Cs-137 activity of this deer truffle (weight 11 g) was additionally determined in the borehole detector. The bark contained 17,560 Bq Cs-137/kg (fresh weight), the spore mass 2,050 Bq/kg.
Literature
Abschlussbericht zum Forschungsvorhaben StSch4324 im Auftrag des Bundesministeriums für Umwelt, Naturschutz und
Reaktorsicherheit
Fielitz U., Richter K., 2013: Bundesweiter Überblick über die Radiocäsiumkontamination von Wildschweinen. Ressortforschungsberichte zur kerntechnischen Sicherheit und zum Strahlenschutz. Vorhaben 3607S0456
Steiner M., Fielitz U., 2009: Deer truffles – the dominant source of radiocaesium contamination of wild boar. Radioprotection,vol.44,n◦5 (2009) 585–588
The measuring principle is based on the excitation of phosphorus atoms (P-32) by radioactive radiation, in this case predominantly Cs-137 (“photostimulated luminescence” PSL).
The left picture shows the “photostimulated luminescence” image of the whole slice of deer truffle. The area between the lines marked 1 and 2 corresponds to the bark. The right image shows a slice of the same deer truffle, without the bark. It can be clearly seen that the highest activity is in the bark (orange color occupation), the spore mass inside contains much less Cs-137 (right figure). The color pattern outside the bark is due to scattered radiation. The Cs-137 activity of this deer truffle (weight 11 g) was additionally determined in the borehole detector. The bark contained 17,560 Bq Cs-137/kg (fresh weight), the spore mass 2,050 Bq/kg.
Translated with www.DeepL.com/Translator